Seasonal change in the balance between capacities of RuBP carboxylation and RuBP regeneration affects CO2 response of photosynthesis in Polygonum cuspidatum.
نویسندگان
چکیده
The balance between the capacities of RuBP (ribulose-1,5-bisphosphate) carboxylation (V(cmax)) and RuBP regeneration (expressed as the maximum electron transport rate, J(max)) determines the CO(2) dependence of the photosynthetic rate. As it has been suggested that this balance changes depending on the growth temperature, the hypothesis that the seasonal change in air temperature affects the balance and modulates the CO(2) response of photosynthesis was tested. V(cmax) and J(max) were determined in summer and autumn for young and old leaves of Polygonum cuspidatum grown at two CO(2) concentrations (370 and 700 micromol mol(-1)). Elevated CO(2) concentration tended to reduce both V(cmax) and J(max) without changing the J(max):V(cmax) ratio. The seasonal environment, on the other hand, altered the ratio such that the J(max):V(cmax) ratio was higher in autumn leaves than summer leaves. This alternation made the photosynthetic rate more dependent on CO(2) concentration in autumn. Therefore, when photosynthetic rates were compared at growth CO(2) concentration, the stimulation in photosynthetic rate was higher in young-autumn than in young-summer leaves. In old-autumn leaves, the stimulation of photosynthesis brought by a change in the J(max):V(cmax) ratio was partly offset by accelerated leaf senescence under elevated CO(2). Across the two seasons and the two CO(2) concentrations, V(cmax) was strongly correlated with Rubisco and J(max) with cytochrome f content. These results suggest that seasonal change in climate affects the relative amounts of photosynthetic proteins, which in turn affect the CO(2) response of photosynthesis.
منابع مشابه
Is there scope for improving balance between RuBP-regeneration and carboxylation capacities in wheat at elevated CO2?
Carboxylation and RuBP-regeneration capacities, which determine light-saturated photosynthetic rate, were analysed in leaves of spring wheat (Triticum aestivum L. cv. Minaret) grown under different atmospheric CO2 partial pressure (pCa) and N supply regimes. Capacities were estimated from a large number of gas exchange, Rubisco and ATP-synthase content measurements, and from these, the pCa at w...
متن کاملSeasonal changes in the temperature response of photosynthesis in canopy leaves of Quercus crispula in a cool-temperate forest.
Understanding seasonal changes in photosynthetic characteristics of canopy leaves is indispensable for modeling the carbon balance in forests. We studied seasonal changes in gas exchange characteristics that are related to the temperature dependence of photosynthesis in canopy leaves of Quercus crispula Blume, one of the most abundant species in cool-temperate forests in Japan. Photosynthetic r...
متن کاملCotton bracts are adapted to a microenvironment of concentrated CO2 produced by rapid fruit respiration.
BACKGROUND AND AIMS Elucidation of the mechanisms by which plants adapt to elevated CO2 is needed; however, most studies of the mechanisms investigated the response of plants adapted to current atmospheric CO2. The rapid respiration rate of cotton (Gossypium hirsutum) fruits (bolls) produces a concentrated CO2 microenvironment around the bolls and bracts. It has been observed that the intercell...
متن کاملEffects of chronic ozone and elevated atmospheric CO2 concentrations on ribulose-1,5-bisphosphate in soybean (Glycine max)
unit Rubisco binding site. Elevated CO2, in CF or O3-fumiRibulose-1,5-bisphosphate (RuBP) pool size was determined at regular intervals during the growing season to understand gated air, generally had no significant effect on RuBP pool size, thus mitigating the negative O3 effect. The RuBP pools the effects of tropospheric ozone concentrations, elevated atmospheric carbon dioxide concentrations...
متن کاملPhotosynthetic acclimation to warming in tropical forest tree seedlings
Tropical forests have a mitigating effect on man-made climate change by acting as a carbon sink. For that effect to continue, tropical trees will have to acclimate to rising temperatures, but it is currently unknown whether they have this capacity. We grew seedlings of three tropical tree species over a range of temperature regimes (TGrowth = 25, 30, 35 °C) and measured the temperature response...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of experimental botany
دوره 56 412 شماره
صفحات -
تاریخ انتشار 2005